

Ionic equilibria

By
Dr. Mohammed Sattar
2018/2019

1

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Outlines

- ➤ Objectives
- >Theories
- ➤ Acid-base equilibria
- ➤ Calculation of pH, acidity constants
- ➤ The effect of ionic strength.

Objectives

- Define of acids and bases
- Concept of Sörensen's pH scale.
- Understanding different terminology such as Ampholytes, Aprotic, etc
- Ionization of Polyprotic electrolytes.
- pKa and pH calculation of aqueous solutions with different composition

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Theories

Arrhenius Theory

 Arrhenius defined an acid as a substance that liberates <u>hydrogen</u> <u>ions</u> and a base as a substance that supplies <u>hydroxyl ions</u> on dissociation in aqueous media.

Brönsted–Lowry theory

•According to the Brönsted–Lowry theory, an <u>acid</u> is a substance, charged or uncharged, that is capable of <u>donating a proton</u>, and a <u>base</u> is a substance, charged or uncharged, that is capable of <u>accepting a proton</u> from an acid.

5

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Solvent classification

- Protophilic
- Protogenic
- Amphiprotic
- Aprotic

Protolytic reactions or protolysis.

TABLE 7-1. Examples of Acid-Base Reactions

	Acid ₁		Base ₂		Acid ₂		Base
Neutralization	NH ₄ +	+	OH-	=	H ₂ O	+	NH ₃
Neutralization	H ₃ O+	+	OH-	=	H ₂ O	+	H ₂ O
Neutralization	HČI	+	NH ₃	=	NH ₄ +	+	CI-
Hydrolysis	H ₂ 0	+	CH3C00-	=	CH ₃ COOH	+	OH-
Hydrolysis	NH4+	+	H ₂ Ŏ	=	H ₃ Ö ⁺	+	NH ₃
Displacement	HCI	+	CH ₃ COO-	=	CH₃COOH	+	CI-

Sörensen's pH

- The hydrogen ion concentration of a solution varies from approximately 1 in a 1 M solution of a strong acid to about 1 × 10⁻¹⁴ in a 1 M solution of a strong base
- •The pH of a solution can be considered in terms of a numeric scale having values from 0 to 14, which expresses in a quantitative way the degree of acidity (7 to 0) and alkalinity (7-14).

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Ionic Equilibria

$$HAc + H_2O \Rightarrow H_3O^+ + Ac^-$$

Acid₁ Base₂ Acid₂ Base₁

Rate of forward =
$$k_1 \times [HAc]^1 \times [H_2O]^1$$

Rate of backward =
$$k_2 \times [H_3O^+]^1 \times [Ac^-]^1$$

At equilibrium

$$k_1 \times [\text{HAc}] \times [\text{H}_2\text{O}] = k_2 \times [\text{H}_3\text{O}^+] \times [\text{Ac}^-]$$

Relationship Between K_a and K_b

$$K_a K_b = \frac{[H_3 O^+][B^-]}{[HB]} \cdot \frac{[OH^-][HB]}{[B^-]} = [H_3 O^+][OH^-] = K_w$$

$$K_a = K_w/K_b$$

$$K_b = K_w / K_a$$

K_w. known as the autoprotolysis constant, or the ion product of water

11

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

EXAMPLE 7-1

In a liter of a 0.1 M solution, acetic acid was found by conductivity analysis to dissociate into 1.32×10^{-3} g ions ("moles") each of hydrogen and acetate ion at 25°C. What is the acidity or dissociation constant K_a for acetic acid?

Ionization of Polyprotic Electrolytes.

$$H_{3}PO_{4} + H_{2}O = H_{3}O^{+} + H_{2}PO_{4}^{-}$$

$$\frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} = K_{1} = 7.5 \times 10^{-3}$$

$$H_{2}PO_{4}^{-} + H_{2}O = H_{3}O^{+} + HPO_{4}^{2-}$$

$$\frac{[H_{3}O^{+}][HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]} = K_{2} = 6.2 \times 10^{-8}$$

$$HPO_{4}^{2-} + H_{2}O = H_{3}O^{+} + PO_{4}^{3-}$$

$$\frac{[H_{3}O^{+}][PO_{4}^{3-}]}{[H_{2}PO_{4}^{2-}]} = K_{3} = 2.1 \times 10^{-13}$$

$$PO_4^{3-} + H_2O \rightleftharpoons HPO_4^{2-} + OH^{-}$$

$$K_{b1} = \frac{[HPO_4^{2-}][OH^{-}]}{[PO_4^{3-}]} = 4.8 \times 10^{-2}$$

$$HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{-} + OH^{-}$$

$$K_{b2} = \frac{[H_2PO_4^{-}][OH^{-}]}{[HPO_4^{2-}]} = 1.6 \times 10^{-7}$$

$$H_2PO_4^{-} + H_2O \rightleftharpoons H_3PO_4 + OH^{-}$$

$$K_{b3} = \frac{[H_3PO_4][OH^{-}]}{[H_2PO_4^{-}]} = 1.3 \times 10^{-12}$$

<u>Ampholytes</u>

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

$^{+}NH_{3}CH_{2}COOH + H_{2}O \rightleftharpoons$ $^{+}NH_{3}CH_{2}COO^{-} + H_{3}O^{+}$ $^{+}NH_{3}CH_{2}COO^{-} + H_{2}O \rightleftharpoons$ $^{+}NH_{2}CH_{2}COO^{-} + H_{3}O^{+}$

Amphoteric compound

 $^{+}$ NH₃CH₂COO $^{-}$ + H₂O \rightleftharpoons $^{+}$ NH₃CH₂COOH + OH $^{-}$ Zwitterion